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LOCAL CONVERGENCE OF A HANSEN-PATRICK-LIKE FAMILY OF

OPTIMAL FOURTH ORDER METHODS

IOANNIS K. ARGYROS1, SANTHOSH GEORGE 2

Abstract. We present a local convergence analysis of an optimal fourth order Hansen-Patrick-

like family of methods in order to approximate a solution of a nonlinear equation. Earlier studies

use hypotheses involving derivatives up to the third order to show convergence although only

the first derivative appears in these methods. In the present study we use only hypotheses on

the first derivative. We also provide computable error bounds on the distances involved based

on Lipschitz constants. This way we expand the applicability of these methods. Numerical

examples are also given in this study.
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1. Introduction

In this study we are concerned with the problem of approximating a locally unique solution

x∗ of equation

F (x) = 0, (1)

where F : D ⊆ S → S is a nonlinear function, D is a convex subset of S and S is R or C.
Newton-like methods are used for finding solutions of (1). These methods are usually studied

based on semi-local and local convergence. The semi-local convergence matter is, based on the

information around an initial point, to give conditions ensuring the convergence of the iterative

procedure; while the local one is, based on the information around a solution, to find estimates

of the radii of convergence balls [1]–[21].

We present the local convergence analysis of the two-step fourth order Hansen-Patrick-like

family of methods defined for each n = 0, 1, 2, · · · by

yn = xn − F ′(xn)−1F (xn)

xn+1 = xn −BnF
′(xn)

−1F (xn), (2)

where x0 is an initial point, α ̸= −1 is a parameter,

An =
1− (α+ 3)F (yn)

F (xn)
− (α2 − 1)(F (yn)

F (xn)
)2

1 + (α− 1)F (yn)
F (xn)
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and Bn = α+1
α±

√
An

. Methods (2) is an alternative to Hansen-Patrick family (2) of methods defined

for each n = 0, 1, 2, · · · by

xn+1 = xn − α+ 1

α±
√
1− (α+ 1)Cn

F ′(xn)
−1F (xn), (3)

where Cn = F ′(xn)
−1F ′′(xn)F

′(xn)
−1F (xn). Note that method (3) requires the computation

of F ′′(xn) at each step where as method (2) uses only the first derivative F ′(xn). The fourth

order of convergence of method (2) was shown by Kanwar in [14] using Taylor expansions and

hypotheses reaching up to the third derivative of function F. Method (2) reduces to: Ostrowski’s

square root method for α = 0; Euler’s method for α = 1; Laquerre’s method for α = 1
µ−1 and

as a limiting case; Halley’s method.

Moreover, method (2) is an optimal fourth-order method in the sense of Kung-Traub [20].

The advantages of method (2) over other fourth order methods were given in [14]. However,

the hypotheses on the third derivative limit the applicability of this method. As a motivational

example, let us define function f on D = [−1
2 ,

5
2 ] by

f(x) =

{
x3 lnx2 + x5 − x4, x ̸= 0

0, x = 0

Choose x∗ = 1. We have that

f ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2, f ′(1) = 3,

f ′′(x) = 6x lnx2 + 20x3 − 12x2 + 10x

f ′′′(x) = 6 lnx2 + 60x2 − 24x+ 22.

Then, obviously, function f ′′′ is unbounded on D. In the present paper we only use hypotheses

on the first Fréchet derivative. This way we expand the applicability of method (2).

The rest of the paper is organized as follows. In Section 2 the local convergence analysis of

method (2) is given. The numerical examples are presented in the concluding Section 3.

2. Local convergence analysis

We present the local convergence analysis of method (2) in this section. Let L0 > 0, L >

0,M ≥ 1, α ∈ S with |α| > 2M + 1 be parameters. It is convenient for the local convergence

analysis that follows to define some functions and parameters.Define functions g1, p0 and hp0 on

the interval [0, 1
L0

) by

g1(t) =
Lt

2(1− L0t)
,

p0(t) =
|α− 1|Mg1(t)

1− L0
2 t

,

hp0(t) = p0(t)− 1,

and parameter r1 by

r1 =
2

2L0 + L
.

We have hp0(0) = −1 < 0 and hp0(t) → +∞ as t → ( 1
L0

)−. It then follows by the Intermediate

Value Theorem that function hp0 has zeros in the interval (0, 1
L0

). Denote by rp0 the smallest
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such zero. Moreover, define functions p and hp on the interval [0, rp0) by

p(t) =
1

|α|

√√√√1 + |α+3|Mg1(t)

1−L0
2
t

+ |α2−1|M2g1(t)2

(1−L0
2
t)2

1− p0(t)

and

hp(t) = p(t)− 1.

We get that hp(0) =
1
|α| − 1 < 0 (by the choice of |α|) and hp(t) → +∞ as t → r−p0 . Denote by

rp the smallest such zero. Furthermore, define functions g2 and h2 on the interval [0, rp) by

g2(t) =
1

2(1− L0t)
(Lt+

2M(1 + |α|p(t))
|α|(1− p(t))

)

and

h2(t) = g2(t)− 1.

We obtain h2(0) =
2M(1+|α|p(0))
|α|(1−p(0)) − 1 = 2M

|α|(1− 1
|α| )

− 1 < 0 (by the choice of |α|) and h2(t) → +∞

as t → r−p . Denote by r2 the smallest zero of function h2 in the interval (0, rp). Set

r = min{r1, r2}. (4)

Then, we have that

0 < r ≤ r1, (5)

and for each t ∈ [0, r)

0 ≤ g1(t) < 1, (6)

0 ≤ p0(t) < 1, (7)

and

0 ≤ p(t) < 1, (8)

and

0 ≤ g2(t) < 1. (9)

Let U(v, ρ), Ū(v, ρ) stand for the open and closed balls in S, respectively, with center v ∈ S

and of radius ρ > 0. Next, we present the local convergence analysis of method (2) using the

preceding notation.

Theorem 2.1. Let F : D ⊆ S → S be a differentiable function. Suppose that there exist x∗ ∈ D,

parameters L0 > 0, L > 0,M ≥ 1 and α ∈ S with |α| > 2M + 1 such that for each x, y ∈ D

F (x∗) = 0, F ′(x∗) ̸= 0, (10)

|F ′(x∗)−1(F ′(x)− F ′(x∗))| ≤ L0|x− x∗|, (11)

|F ′(x∗)−1(F ′(x)− F ′(y))| ≤ L|x− y|, (12)

|F ′(x∗)−1F ′(x)| ≤ M, (13)

and

Ū(x∗, r) ⊆ D,
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where the radius r is given by (4). Then, sequence {xn} generated for x0 ∈ U(x∗, r) − {x∗}
by method (2) is well defined, remains in U(x∗, r) for each n = 0, 1, 2, · · · and converges to x∗.

Moreover, the following estimates hold

|yn − x∗| ≤ g1(|xn − x∗|)|xn − x∗| < |xn − x∗| < r, (14)

and

|xn+1 − x∗| ≤ g2(|xn − x∗|)|xn − x∗| < |xn − x∗|, (15)

where the ”g” functions are defined above Theorem (2.1). Furthermore, for T ∈ [r, 2
L0

) the limit

point x∗ is the only solution of equation F (x) = 0 in Ū(x∗, T ) ∩D.

Proof. We shall show estimates (14) and (15) using mathematical induction. By hypothesis

x0 ∈ U(x∗, r)− {x∗}, (5) and (11) we get that

|F ′(x∗)−1(F ′(x0)− F ′(x∗))| ≤ L0|x0 − x∗| < L0r < 1. (16)

It follows from (16) and the Banach Lemma on invertible functions [2, 5, 15, 20] that F ′(x0) ̸= 0

and

|F ′(x0)
−1F ′(x∗)| ≤ 1

1− L0|x0 − x∗|
. (17)

Hence, y0 is well defined by the first sub-step of method (2) for n = 0. Using (4), (6), (10), (12)

and the first sub-step of method (2) for n = 0 we get in turn that

|y0 − x∗| ≤ |x0 − x∗ − F ′(x0)
−1F ′(x∗)|

≤ |F ′(x0)
−1F ′(x∗)||

∫ 1

0
F ′(x∗)−1[F ′(x∗ + θ(x0 − x∗)− F ′(x0)](x0 − x∗)dθ|

≤ L|x0 − x∗|2

2(1− L0|x0 − x∗|)
= g1(|x0 − x∗|)|x0 − x∗| < |x0 − x∗| < r, (18)

which shows (15) for n = 0 and y0 ∈ U(x∗, r). We can write by (10) that

F (x0) = F (x0)− F (x∗) =

∫ 1

0
F (x∗ + θ(x0 − x∗))(x0 − x∗)dθ. (19)

Notice that |x∗ + θ(x0 − x∗)− x∗| ≤ θ|x0 − x∗| < r. Hence, x∗ + θ(x0 − x∗) ∈ U(x∗, r). In view

of (13) and (19) we get that

|F ′(x∗)−1)F ′(x0)| ≤ |
∫ 1

0
F (x∗ + θ(x0 − x∗))(x0 − x∗)dθ| ≤ M |x0 − x∗|. (20)

Similarly by replacing x0 by y0 in (20), we have that

|F ′(x∗)−1)F ′(y0)| ≤ M |y0 − x∗|.

Next, we show that 1 + (α− 1)F (y0)
F (x0)

̸= 0 for x0 ̸= x∗. We get by (11) that

|(F ′(x∗)(x0 − x∗))−1[F (x0)− F (x∗)− F ′(x∗)(x0 − x∗)]|

≤ |x0 − x∗|−1L0

2
|x0 − x∗|2 = L0

2
|x0 − x∗| < L0

2
r < 1.

Hence, we have that F (x0) ̸= 0 and
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|F ′(x0)
−1F ′(x∗)| ≤ 1

|x0 − x∗|(1− L0
2 |x0 − x∗|)

. (21)

Then, we have by (4), (7), (18) and (21) that

|α− 1||F (y0)

F (x0)
| ≤ |α− 1|M |y0 − x∗|

|x0 − x∗|(1− L0
2 |x0 − x∗|)

≤ |α− 1|Mg1(|x0 − x∗|)
1− L0

2 |x0 − x∗|
= p0(|x0 − x∗|) < p0(r) < 1. (22)

Hence, we get by (22) that

|(1 + (α− 1)
F (y0)

F (x0)
)−1| ≤ 1

1− p0(|x0 − x∗|)
. (23)

We have by (22) the estimate

|1− (α+ 3)(
F (y0)

F (x0)
)− (α2 − 1)(

F (y0)

F (x0)
)2|

≤ 1 +
|α+ 3|Mg1(|x0 − x∗|)

1− L0
2 |x0 − x∗|

+
|α2 − 1|M2g21(|x0 − x∗|)

(1− L0
2 |x0 − x∗|)2

. (24)

It then follows from (4), (8), (23) and (24) that

1

|α|
√

A0 ≤ p(|x0 − x∗|) < p(r) < 1.

Hence, we get that

(1±
√
A0

α
)−1 ≤ 1

1− p(|x0 − x∗|)
. (25)

We also have that

|I −B0| ≤
1 +

√
A0

1− p(|x0 − x∗|)
≤ 1 + |α|p(|x0 − x∗|)

1− p(|x0 − x∗|)
. (26)

Hence, x1 is well defined by the second sub-step of method (2) for n = 0. Then, we have by (4),

(9), (17), (18), (20), (22) and (23) that

|x1 − x∗| ≤ |x0 − x∗ − F ′(x0))
−1F ′(x0)|+ |I −B0||F ′(x0)

−1F (x∗)|
×|F ′(x∗))−1F (x0)|

≤ L|x0 − x∗|2

2(1− L0|x0 − x∗|
+

(1 + |α|p(|x0 − x∗|))M |x0 − x∗|
|α|(1− p(|x0 − x∗|))(1− L0|x0 − x∗|)

= g2(|x0 − x∗|)|x0 − x∗| < |x0 − x∗| < r, (27)

which shows (15) for n = 0 and x1 ∈ U(x∗, r). By simply replacing x0, y0, x1 by xk, yk, xk+1 in

the preceding estimates we arrive at estimate (14) and (15). Using the estimate |xk+1 − x∗| <
|xk − x∗| < r, we deduce that xk+1 ∈ U(x∗, r) and limk→∞ xk = x∗. To show the uniqueness
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part, let Q =
∫ 1
0 F ′(y∗ + θ(x∗ − y∗)dθ for some y∗ ∈ Ū(x∗, T ) with F (y∗) = 0. Using (11) we get

that

|F ′(x∗)−1(Q− F ′(x∗))| ≤
∫ 1

0
L0|y∗ + θ(x∗ − y∗)− x∗|dθ

≤
∫ 1

0
(1− θ)|x∗ − y∗|dθ ≤ L0

2
R < 1. (28)

It follows from (28) and the Banach Lemma on invertible functions that Q is invertible. Finally,

from the identity 0 = F (x∗)− F (y∗) = Q(x∗ − y∗), we deduce that x∗ = y∗. �

Remark 2.1. 1. In view of (11) and the estimate

∥F ′(x∗)−1F ′(x)∥ = ∥F ′(x∗)−1(F ′(x)− F ′(x∗)) + I∥
≤ 1 + ∥F ′(x∗)−1(F ′(x)− F ′(x∗))∥ ≤ 1 + L0∥x− x∗∥

condition (13) can be dropped and M can be replaced by

M(t) = 1 + L0t

or by M(t) = M = 2 since t ∈ [0, 1
L0

).

2.The results obtained here can be used for operators F satisfying autonomous differential

equations [2] of the form

F ′(x) = P (F (x)),

where P is a continuous operator. Then, since F ′(x∗) = P (F (x∗)) = P (0), we can apply the

results without actually knowing x∗. For example, let F (x) = ex − 1. Then, we can choose:

P (x) = x+ 1.

3.The radius r1 given by (4) was shown by us to be the convergence radius of Newton’s method

[2, 5]

xn+1 = xn − F ′(xn)
−1F (xn) for each n = 0, 1, 2, · · · (29)

under the conditions (9) and (10). It follows from (6) and r < r1 that the convergence radius r

of the method (2) cannot be larger than the convergence radius r1 of the second order Newton’s

method (22). As already noted in [2, 5] r1 is at least as large as the convergence ball given by

Rheinboldt [19]

rR =
2

3L
.

In particular, for L0 < L we have that

rR < r

and
rR
r1

→ 1

3
as

L0

L
→ 0.

That is our convergence ball r is at most three times larger than Rheinboldt’s. The same value

for rR was given by Traub [20].

4.It is worth noticing that method (2) is not changing when we use the conditions of The-

orem 2.1 instead of the stronger conditions used in [14, 16]. Moreover, we can compute the

computational order of convergence (COC) defined by

ξ = ln

(
∥xn+1 − x∗∥
∥xn − x∗∥

)
/ ln

(
∥xn − x∗∥
∥xn−1 − x∗∥

)
or the approximate computational order of convergence

ξ1 = ln

(
∥xn+1 − xn∥
∥xn − xn−1∥

)
/ ln

(
∥xn − xn−1∥
∥xn−1 − xn−2∥

)
.
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This way we obtain in practice the order of convergence in a way that avoids the bounds involving

estimates using estimates higher than the first Fréchet derivative of operator F.

3. Numerical examples

We present two numerical examples in this section.

Example 3.1. Returning back to the motivational example at the introduction of this study,

we have L0 = L = 146.6629073, M = 2. Then for α = 6 the parameters are

r1 = 0.0045, r2 = 0.0009 = r.

Example 3.2. Let D = [−1, 1]. Define function f of D by

f(x) = ex − 1. (30)

Using (30) and x∗ = 0, we get that L0 = e − 1 < L = M = e. Then for α = 6 the parameters

are

r1 = 0.3249, r2 = 0.0540 = r.

Example 3.3. Let D = (−∞,+∞). Define function f of D by

f(x) = sin(x).

Then we have for x∗ = 0 that L0 = L = M = 1. Then for α = 4 the parameters are

r1 = 0.6667, r2 = 0.2656 = r.

4. Conclusion

We present a local convergence analysis of a fourth order method in order to approximate

a solution of an equation in a Banach space setting. Earlier convergence analysis (on the real

line) is based on hypotheses up to the third Fréchet-derivative [1]–[20]. In this paper the local

convergence analysis is based only on Lipschitz hypotheses of the first Fréchet-derivative. Hence,

the applicability of these methods is expanded.
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